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The cavity in which the magnetic field of two arbitrary line currents is confined 
by a streaming plasma which is assumed cold and perfectly conducting is investi- 
gated by using conformal transformations. When the magnetic field at the bound- 
ary is always directed in the same sense the finite breadth of the cavity at infinity 
depends only on the algebraic sum of the inducing currents and not their posi- 
tion. If the two line currents are of opposite sign the boundary magnetic field may 
change sign at  two ‘ pseudo-singularities ’. 

1. Introduction 
The cavity in which sources of magnetic field are confined by stationary or 

streaming plasmas has been investigated by several authors in an attempt to 
estimate theoretically the shape and size of the cavity in which the earth’s 
magnetic field is confined by the solar plasma. The problem of determining the 
cavity in which a three-dimensional dipole is confined by a stationary or streaming 
plasma is very difficult and has been investigated only by approximate or numeri- 
cal methods (see, for example, Beard 1960; Midgley & Davis 1962; Slutz 1962; 
Midgley & Davis 1963; Mead & Beard 1964). Fortunately we can obtain exact 
solutions for two-dimensional models by using conformal transformations. 

Hurley (1961a) solved the problem of a plasma streaming past the magnetic 
field of a line current. Dungey (1961), Hurley (1961 b )  and Zhigulev & Romishev- 
skii (1959) independently solved the problem of a plasma streaming past a two- 
dimensional dipole. Sozou (1964) investigated the problem of a two-dimensional 
dipole and also that of two arbitrary line currents (1966) immersed in a plasma 
at  uniform pressure. 

In  this note we investigate the problem of two arbitrary line currents immersed 
in a streaming plasma. Thus the problems considered by Hurley, Dungey and 
Zhigulev & Romishevskii are special cases of the present problem. It is assumed 
that the distance between the line currents and the direction of incidence of the 
streaming plasma are such that both currents lie in one cavity at the boundary 
of which there is a thin current sheath. Thus plasma and magnetic field occupy 
different positions in space and are shielded from each other by the current sheath. 

t Now at the University of Sheffield. 
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Using conformal transformations we obtain an exact solution. Given the 
position of the line currents in the physical plane in the general case, we obtain 
a number of complicated equations (the number of equations varies between 
one and ten depending on the sign and position of the line currents) in an equal 
number of parameters whose determination enables us to calculate the boundary. 
Thus it is simpler to prescribe the position of the line currents in the transformed 
plane and proceed to obtain the corresponding boundary and position of the line 
currents in the physical plane. 

2. Equations of the problem 

conditions 
Let the magnetic field be B = (B,,B,,O). This must satisfy the following 

V.B = 0 everywhere, 

P x B = 0 everywhere inside the cavity except at  the 
line currents. 

If v is the undisturbed speed of the stream, p its density and $ the angle between 
the normal to the boundary and the stream then an amount of momentumpv cos $ 
times v cos # is incident normally to the boundary per unit time. Thus the par- 
ticle pressure is kpv2 cos2 #, where k = 2 if we have specular reflexion and k = 1 
if the stream particles are brought to rest at  the boundary and thence proceed 
tangentially. The magnitude of k, which is assumed a fixed constant throughout, 
affects the linear dimensions but not the shape of the boundary. At the boundary 
the particle pressure is equal to the magnetic pressure, that is 

IB12 = B:+Bi =p2c0s2$, (2) 
where p2 = 87rkpv2. 

denotes complex conjugate. 
Equation (1) is satisfied if B = B,-iB, = B(z)  where x = x+iy and a bar 

Since at the boundary the magnetic field is tangential we have 

Bdz = B,dx+B,dy = B.ds = &lBlds = +pcos$ds = k p d y ,  (3) 

using (2), where ds is an element of arc of the boundary. In  (3) the positive sign 
holds whenB and ds are in the same direction and the negative sign holds when 
B and d s are in opposite directions. Let 

.E = d@/dz, (4) 

and let the two line currents be I ,  and I, situated at  a, and a, respectively. It 
is assumed that the distance between the line currents and the direction of the 
streaming plasma are such that the two line currents are confined in one cavity. 

If we assume that very near the line currents the lines of force are not affected 
substantially by the incident stream pressure we require 

(5) 
diD/dz = E(z )  N 2I,/{i(z - a,)}, when z -+ a,, 

N 212/{i(z-a2)}, when z + a,. 
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Let us assume (Riemann’s mapping theorem) that there is a transformation 
w(z) [and its inverse z(w)J that transforms the unknown domain in the z-plane 
into a unit circle in the w-plane so that the origins in the two domains 
correspond. Let also the points a, and a, in the z-plane correspond to points A ,  
and A ,  in the w-plane, that is 

w(al) = A l  or 

w(a,) = A ,  or z(A,) = a,.. 

If we express CD in terms of w we have 

@(z) = d w ) .  
From ( 5 ) ,  (6) and (7) we get 

i N ___- 212 as W + A ~ ,  
i(w - A,)  

(7) 

that is, the singularities of dCD/dz in the z-plane are transformed into singularities 
of dgldw at the corresponding points in the w-plane. Equations (3), (4) and (7)  
show that dg is real at  the boundary. This and the fact that dgldw has two simple 
poles at  A, and A ,  inside the unit circle require that 

The mathematical formulation and equations of the problem up to this point 
are identical with the prablem of two line currents immersed in a plasma a t  
uniform pressure, which was considered by SOZOU (1966)’ except for an extra 
factor of cos2 4 in the boundary condition (2) which manifests itself in equation 
(3), and a slight change in notation (in order to avoid roots we denote the pres- 
sure by p 2  instead of p ) .  

Equations (3), (a), (7) and (9) require that at the boundary 

where rlei@l = A,  and r,e% = A,. dy = Im ([dzldw] dw) and thus at the boun- 
dary (dw = iwd8) 

(11)  

Since w(z) transforms the domain in the z-plane conformally into a unit circle 
in the w-plane dwldz (and dzldw) is regular in the domain, that is, it has no zeros 
or singularities. Since the stream particles are assumed cold they cannot bend 
round to close the cavity, that is, the cavity extends to infinity. The breadth 
of the cavity at infinity is given by y(n) - y( - n) which, as it is easily seen by 
integrating (lo), is finite. Thus the boundary of the unit circle in the w-plane 
must have a singularity that corresponds to the point at infinity in the z-plane. 
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Thus we must find a function of w, (dxldw), which is regular inside the unit 
circle and has one singularity on the boundary, which will be the point w = - 1 
if the plasma is coming from the positive direction of the x-axis, corresponding 
to the point at  infinity in the z-plane. From (10) and (1 1) we find that at the 
boundary (w = eie), 

If I, = 0, all the above conditions are satisfied by 

411 (1 f 2,) - -___ _ -  dz 
dw p(w f 1) (B,w- 1) 

From this equation we recover the results contained in Hurley’s paper (1961a). 
Depending on T,, 8,, I,, T,, e2, and I, (10) may have two or no zeros as 8 varies 

between - T and n-. If (10) has no zeros, the surface field is always directed in the 
same sense. If (10) has two zeros, say 0 = a, and 6 = a,, ( -7r < a2 < a, < rr), the 
boundary is parallel to the direction of the stream at the corresponding points 
in the x-plane. These two points are connected by a line of force that passes 
between the line currents and divides the cavity into two regions, each of which 
is dominated by the magnetic field of one of the line currents. Thus the surface 
field changes direction at the corresponding points, say from anticlockwise 
between them to clockwise from them to infinity. In  this case the plus sign in 
(12) holds between a, and a,. 

When the direction of the undisturbed stream is parallel to the line joining the 
line currents, A ,  and A ,  may be chosen to be real. In  this case it can easily be 
seen from (9) or (10) that a, = -a2 = a say. Equation (12) and the conditions 
discussed above are satisfied by the following transformation 

+ Il(1+A,)2[-n-+4tan-1((l+A,)/(1-A,)tan~a)](w- - ________ -. 1) 
(w-A,) (A,w- 1) (w+ I) 

I,( 1 + A,),  [ - 1~ + 4 tan-l((l+ A,)/(  1 - A,) tan+a)] (w - 1) 
* (14) + __-_ 

(w- A,)(A,w- 1) (w+ 1) 

In the general case when A,  and A, are complex and a, + - a2 the transformation 
becomes 

- Il(1 - r! )  I,(1 - 
f-- ___ 7rp dz 

2 dw (w - A,)  (B,w - 1) (w - A,) (A2w - 1) 
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where R,, R,, 6, and 6, are real and chosen so that (15) is regular at A, and A,, 

and (17) 

Two cuts are required to make the logarithmic expressions in the above 
equations single-valued. Thus cuts, at eial [for log(w-eial)] and at  eiaz [for 
log (w - eiaz)] are made along the tangents to the unit circle at  the corresponding 
points in the direction of 8 increasing and of 6 decreasing, respectively. (It is 
assumed that 8 increases continuously from - n to n.) Thus 

( l+r l tani(al-  
A, - eiai 

2 A ~ g ( ~ )  = -4n+a,-a2+2tan-1 __ l - r ,  

- 2 tan-, (='tan&(a,- l - r ,  6,)) . (18) 

The case of a plasma streaming past a two-dimensional dipole (Hurley 1961b) 

We have to be careful as to what meaning we attach to the expression 
is obtained as the usual limit from (14) or (15). 

log{(w -ei@l)/(w-eia2)}2, (19) 

when (10) has no zeros (for examples when Il and I, are of the same sign). eial 
and eiaz are the points on the unit circle in the w-plane that correspond to the 
points at  the boundary in the z-plane at  which the magnetic field changes direc- 
tion. These points may disappear either by moving first to infinity, in which 
case a, = - a, = n and (19) is zero or by coinciding (when the distance between 
the two points in the z-plane vanishes). In  this case a, = a, and the cuts made in 
the w-plane require that (19) be set equal to - 4ni. 

3. Results and discussion 
Since in (10) dy is always of the same sign as d8 (except at  8 = cxl and 8 = a,, 

where dy = 0), it  is not possible to arrange the position of the line currents with 
respect to the incident stream so as to get plasma trapped inside the field cavity 
as in the case of two line currents immersed in a stationary plasma at uniform 
pressure (Sozou 1966). 

If we integrate (10) in the case when its right-hand side never vanishes, we 
see that a t  infinity the breadth of the cavity depends only on the intensity and 
not the position of the two line currents. From this it is easily deduced that a t  
infinity the breadth of a cavity of any number of line currents immersed in a 
streaming plasma depends only on the algebraic sum of the currents enclosed, 
provided that just inside the boundary the magnetic field is always directed in 
the same sense. If the magnetic field at  the boundary changes sign, the breadth 
of the cavity at  infinity depends on the position of the two line currents inside 
the cavity. This breadth is a minimum if the two line currents are placed in 
such a position that the magnetic field at  the boundary is always directed in the 
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same sense. (This is always possible if the algebraic sum of the two line currents 
is not zero.) 

If we integrate (15) and arrange that the origins in the two domains corre- 
spond we get four equations by equating real and imaginary parts for the 

Curve 

A 
B 
C 
D 
E 
F 
G 
H 
K 

1 2 P I  T1 01 

-1 0.99 t= 
-1 0.90 w 
-1 0.75 3 7  

-1 0.50 *n 
1 0.98 t n  
1 0.90 @ 
1 0.75 $77 

1 0.50 t77 

1 0.25 t n  

x', 
3.920 
1.625 
0.757 
0.207 
3.245 
1.659 
0.827 
0.287 
0.064 

TABLE 1 

y ,  a1 

1.549 0 
1.366 0 
1.053 0 
0.547 0 
1-549 - 
1.464 - 
1.286 - 
0.926 - 
0.489 - 

a2 

-77 

-7T 

-77 

-77 
- 

.v 
I '  

I \ 
3t- 

I 1 

I-, Streaming 
plasma - 

- I 

3 2 1 4 x  

I2 

Streaming 
plasma 
-f-- 

FIGURE 1. Half the cross-section of the boundary of the magnetic field of two line currents 
of the same intensity which are placed symmetrically in a streaming plasma. Letters 
indicate the position of one of the line currents and the corresponding boundary. 

x = px/47TI,, Y = py/477I,. 

positions of the two line currents. We get another four equations by equating 
real and imaginary parts in (16) and (17). By equating to zero the right-hand side 
of (10) we get two equations connecting a, and a, to r l ,  r,, 8, and 8,. Thus we have 
ten equations in ten unknowns r,, r,, el, 6,, a,, a,, a,, S,, R, and R, whose deter- 
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mination, and substitution in the integrated form of (15) will give us the boundary 
in the physical plane. By choosing one of the two line currents to be at  the 
origin the number of equations and unknowns is reduced by at least two. The 
simplest case arises when the two line currents are of the same sign, and the line 
joining them is parallel to the direction of the incident stream. In this case the 
required transformation is (14) with a, = a, = 0. If we further arrange so that 

Curve I2lIl TP LY, a1 a 2  

A - 0.25 0.99 1.54 0,070 - 0.070 
B - 0.25 0.90 0.674 0.204 - 0.204 
C - 0.25 0-75 0.346 0.251 - 0'251 
D - 0.25 0.50 0-232 - - 
E - 0.25 0.25 0.15 - - 

TABLE 2 

Y 

Streaming 
plasma 

I 

1.5 1 0 5  c 05 1 X 
FIGURE 2. Half the cross-section of the boundary of the magnetic field of two line currents 
in line with the direction of the incident stream. I ,  is at the origin. Letters indicate the 
position of I, ( = - 0.2511) and the corresponding boundary. X = px/47rIl, Y = py/4rI1. 

one of the line currents, say I,, is a t  the origin, we shall have to determine only 
one real unknown, A,, the corresponding position of 1, in the w-plane, in order 
that we may be able to calculate the boundary in the x-plane. A ,  is, of course, 
determined from the integrated form of (14). In  the general case, however, 
the equations are very complicated. Thus it is much simpler if we assume values 
for T,, r,, 8, and 8, and obtain 01, and a, from (lo), and R,, R,, a,, and 8, from (16) 
and (17). The integrated form of (15) will then give us the boundary and the posi- 
tions of the two line currents. 
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The method described above was programmed in Algol and the program was 
run on the Atlas computer of London University. Tables 1 and 2 show the sets 
of data for the corresponding boundaries of figures 1 and 2 respectively. 

From figure 1 it is seen that as rl ,  r2 + 1 the cavity tends to split into two 
cavities, one for each line current. 

If the magnetic field changes direction at  the boundary, in general, it does so 
a t  two pseudo-singularities in that there, only dy = 0 and dz/dw =/= 0. By a 
suitable choice of the data we may be able to get dxldw = 0 at these points, 
that is, these points become singularities (cusps) of the boundary. These cusps 
are parallel to the direction of the incident stream and may allow plasma to 
enter the cavity. Note that in figure 1, at y = 0, the boundary is at right angles to 
the X-axis when Il = I, and touches it, that is, we have a cusp when Il = - 12. 
When the boundary is symmetrical about the line joining the line currents, (14) 
shows that we get only one cusp when a = 0. In  this case the boundary magnetic 
field just becomes directed in the same sense, and there is a line of force through 
the singular point forming a closed loop round the nearest line current. 

One of us (G. L.) is indebted to the Department of Scientific and Industrial 
Research for a maintenance grant during the progress of this work. 
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